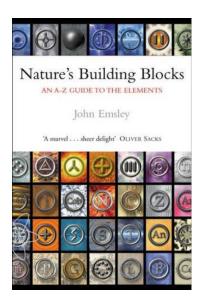
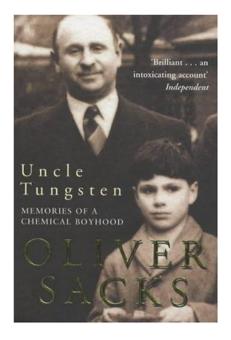

EPFL

Chemie des Éléments s et p

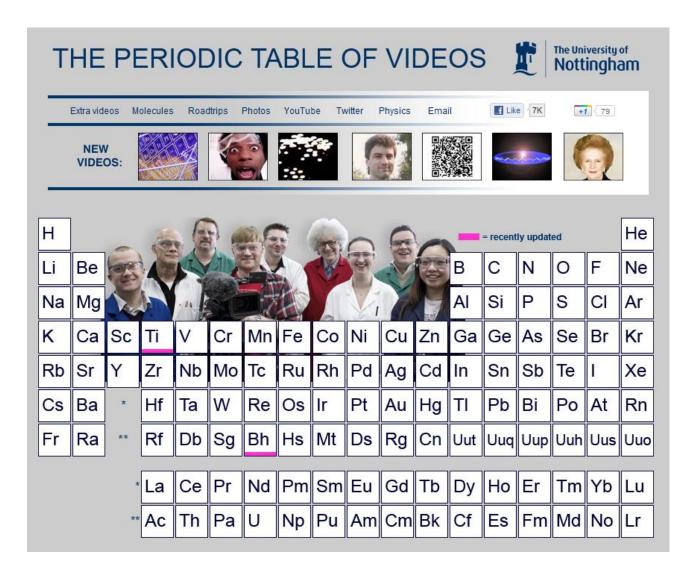

Kay Severin

Content

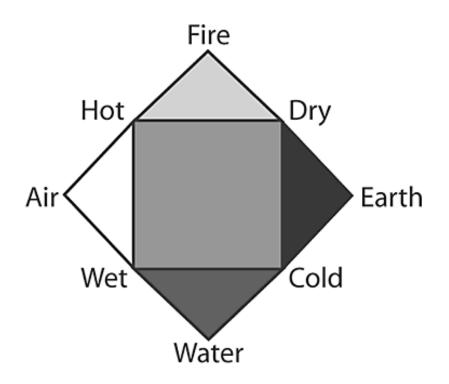
- Introduction
- Structures
- Hydrogen
- Alkali Metals
- Earth Alkaline Metals
- Group 13 Elements
- Group 14 Elements
- Group 15 Elements
- Group 16 Elements
- Halogens
- Nobel Gases



Literature



« Nature's Building Blocks »
John Emsley
Comment: Very interesting facts about the history and the economics of the elements.

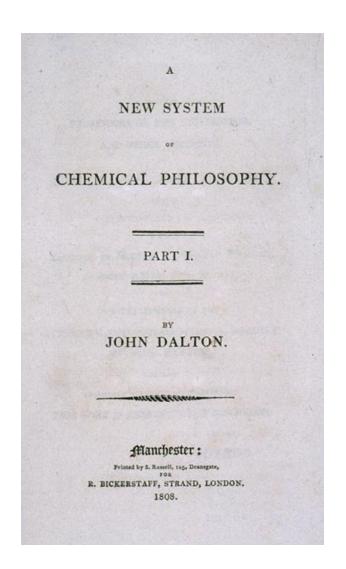

« Uncle Tungsten – Memoires of a Chemical Boyhood » Oliver Sacks Comment: Autobiography with lots of chemistry anecdotes and history.

Websites

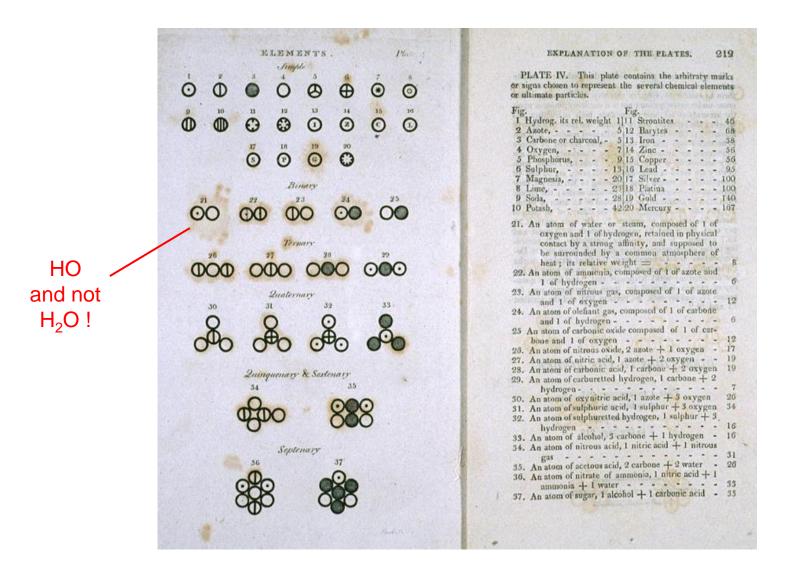
The Four Elements

All material things are made up of these four substances in some proportions. They were not thought of as elements in the modern sense of the word. "Water" could apply to other liquid substances, "earth" to any of several solid materials, and "air" to any gas. Associated with the four primordial substances are four primary qualities: heat, cold, moisture, and dryness.

In 1624 the French chemist Étienne de Clave was arrested because he questioned this scheme!


Empedoceles (c. 490 – 430 BC) Aristotle (384 – 322 BC)

The Atomic Theory


- Dalton's presented his atomic theory in his book « A New System of Chemical Philosophy » in 1808.
- He assumed atoms (from the Greek atomos) with a certain weight, which are identical for the same element.

John Dalton (1766 – 1844)

Dalton's Atomic Symbols

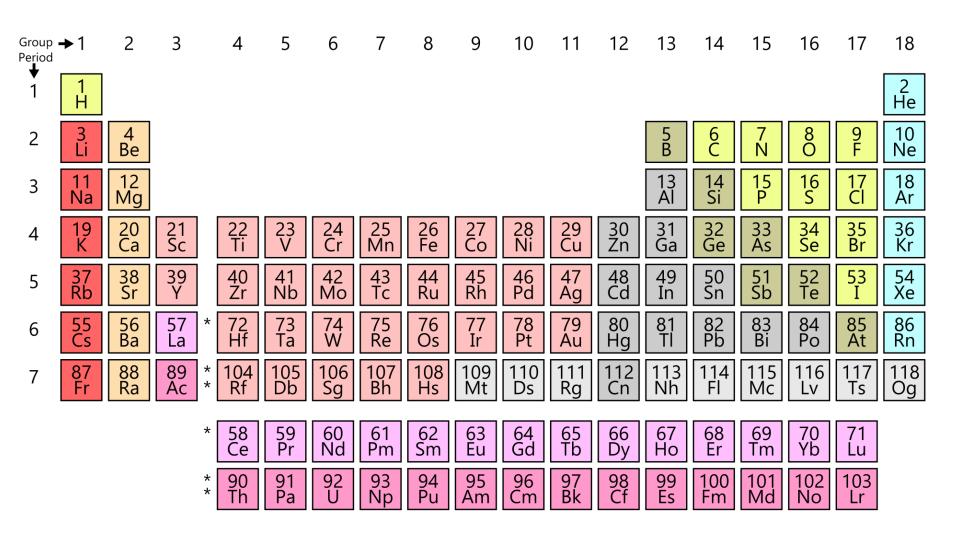
Dalton's symbols for the atoms of various elements and their compounds.

The Periodic Table – Mendeleev

- Russian chemist who worked in St. Petersburg
- Arranged the 63 known elements into a periodic table based on atomic mass, which he published in 1869.
- Similar attempts were presented by other scientists at around the same time.
- Predicted the existence and properties of new elements and pointed out accepted atomic weights that were in error.
- His table did not include any of the Noble Gases, which had not yet been discovered.

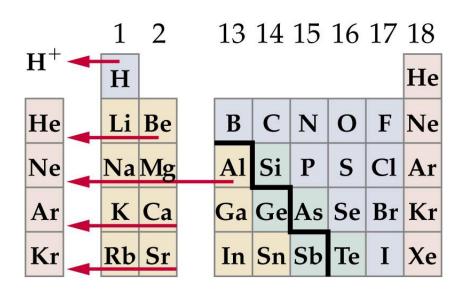
Dimitri Ivanovitch Mendeleev (1834-1907)

The Periodic Table – Mendeleev

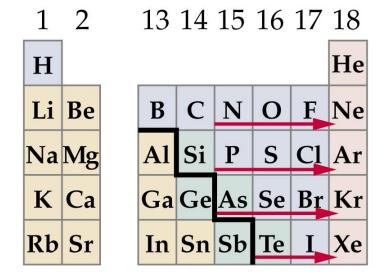

- 52.5	<u> </u>	200	200 0	1 1 0 0	lle II.	0190		
Reihen	Grappe I. R10	Gruppe II.	Gruppe III.	Gruppe 1V. RE¹ RO²	Gruppe V. RR ² R ² O ⁵	Gruppe VI. RH ² RØ ³	Gruppe VII. RB R'O'	Grappe VIII.
1	H=1	100				1887		
2	Li = 7	Bc = 9,4	B=11	C=12	N=14	0=16	F = 19	į
3	Na == 23	Mg = 24	Al=27,3	Si = 28	P = 31	8=32	Cl = 35,5	n
4	K = 39	Ca = 40	—= 44	'Γi == 48 	V = 51	Cr = 52	Mn=55	Fe = 56, $Co = 59$, $Ni = 59$, $Cu = 63$.
5	(Cu=63)	$Z_{n} = 65$	-=68	— = 72	As = 75	Se = 78	Br == 80	<u> </u>
6	Rb = 85	Sr == 87	?Yt=88	Zr == 90	Nb == 94	Mo=96	-=100	Ru=104, Rh=104, Pd=106, Ag=108
7	(Ag = 108)	Cd = 112	In = 113	8n = 118	8b == 122	$T_0 = 125$	J = 127	<u> </u>
8	Cs = 133	Ba == 137	7Di == 138	?Co == 140	. 	! —	· _	ATT 1 1
9	(—)	J _		_	8-49		<u> </u>	
10	_	()	?Er == 178	7La == 180	Ta == 182	W = 184	_	0s = 195, $Ir = 197$, $It = 198$, $Au = 199$.
11	(Au = 199)	Hg = 200	TI = 204	Pb = 207	Bi = 208	_		

Н				I	Иe	end	lele	ev'	s I	Per	ioc	dic	. 7	a	ble	e in	Μ	od	ler	n I	For	m								89	
Li	Be																									В	C	N	0	F	Γ
Na	Mg																									Al	Si	P	S	CI	Г
K	Ca																Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn			As	Se	Br	Γ
Rb	Sr															?Yt	Zr	Nb	Mo		Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	J	Γ
Cs	Ba	?Di	Ce		8	2/8	5			Т		E	r					Ta	W		Os	Ir	Pt	Au	Hg	TI	Pb	Bi		10 S	Γ
- 23			Th	- 1	1	000	- 22		1	1					1		- 8					B-18	66 E	- 7					8-3	2 - 2	Г

1869 Symbol		modern Symbol
Yt	becomes	Y
J	becomes	I
Di	mixture of Pr, N	d, Pm, Sm, Eu & Gd
La	incorrect mass,	139 not 180


Mendeleeve's Predictions	Element
Eka-aluminium	Gallium
Eka-boron	Scandium
Eka-silicon	Germanium
Eka-manganese	Technetium
Tri-manganese	Rhenium
Dvi-tellurium	Polonium
Dvi-caesium	Francium
Eka-tantalum	Protactinium

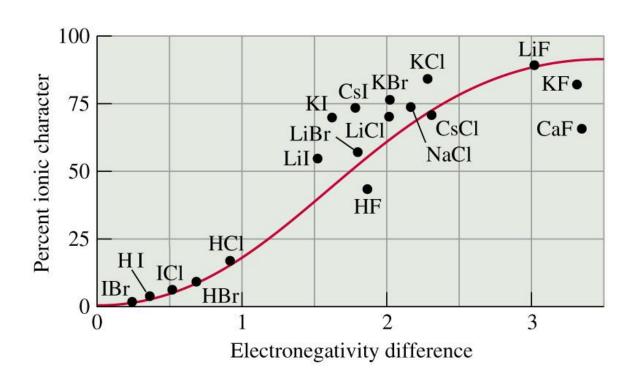
The Periodic Table – Today



Elements are arranged by increasing atomic numbers and not by their weight.

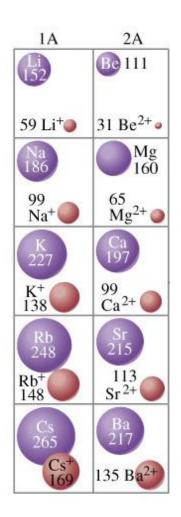
Metals and Non-Metals

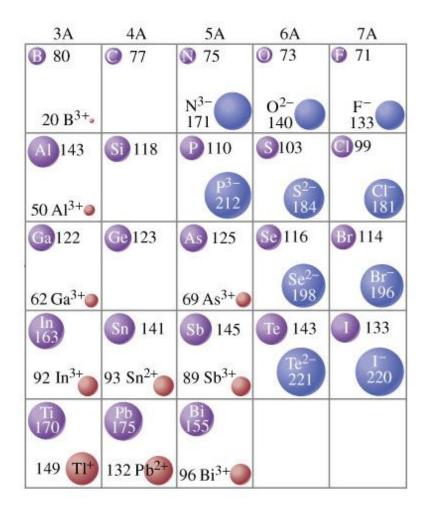
Metals tend to lose electrons to attain noble gas electronic configuration.

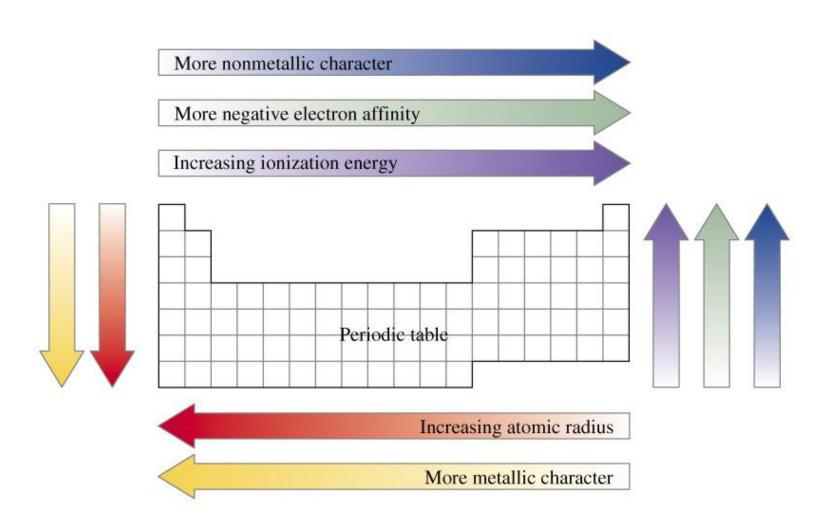

Non-metals tend to gain electrons to attain noble gas electronic configuration.

The Pauling Scale of Electronegativity

1	,															
H 2.1	2		be	elow 1	.0		2.	0-2.4				13	14	15	16	17_
Li 1.0	Be 1.5			0-1.4 5-1.9				5-2.9 0-4.0				B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	A1 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.8	Ba 0.9	La* 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	T1 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra 0.9	Ac [†] 1.1		nthani inide		.1–1.3 -1.5										


Electronegativities of the elements. As a general rule, electronegativities decrease from top to bottom in a group and increase from left to right in a period of elements. The values are from L. Pauling, 'The Nature of the Chemical Bond'. They may be somewhat different from values based on other scales.


Ionic vs. Covalent Bonds


Percent ionic character of a chemical bond as a function of electronegativity difference.

Some Representative Atomic & Ionic Radii

Summary of Trends in the Periodic Table

